

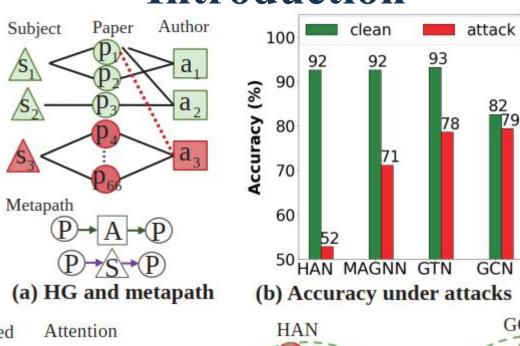
Robust Heterogeneous Graph Neural Networks against Adversarial Attacks

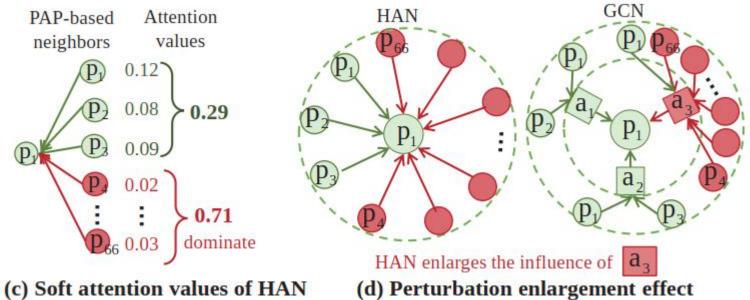
Mengmei Zhang, Xiao Wang, Meiqi Zhu, Chuan Shi, Zhiqiang Zhang, Jun Zhou

Beijing University of Posts and Telecommunications Ant Group, Hangzhou, China

AAAI 2022

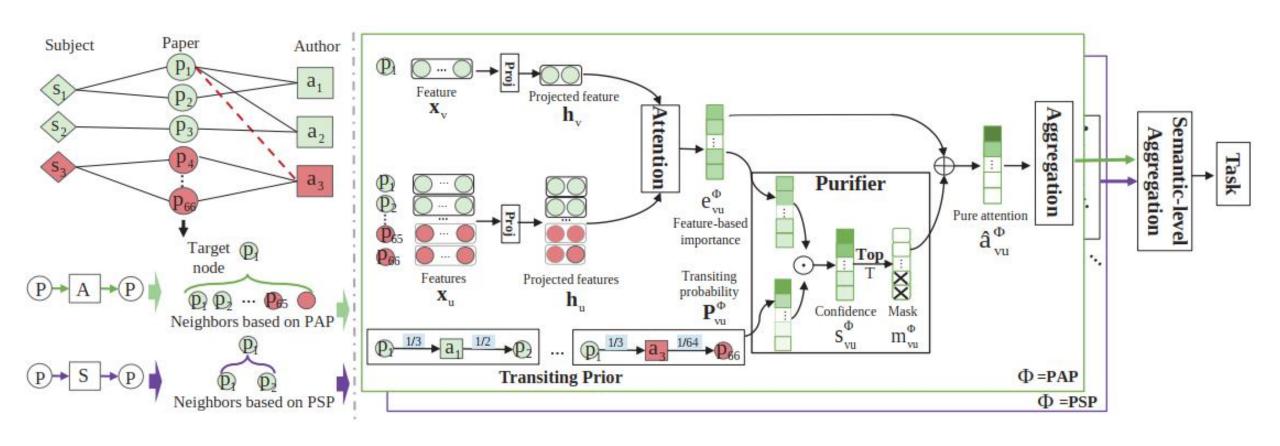
Introduction



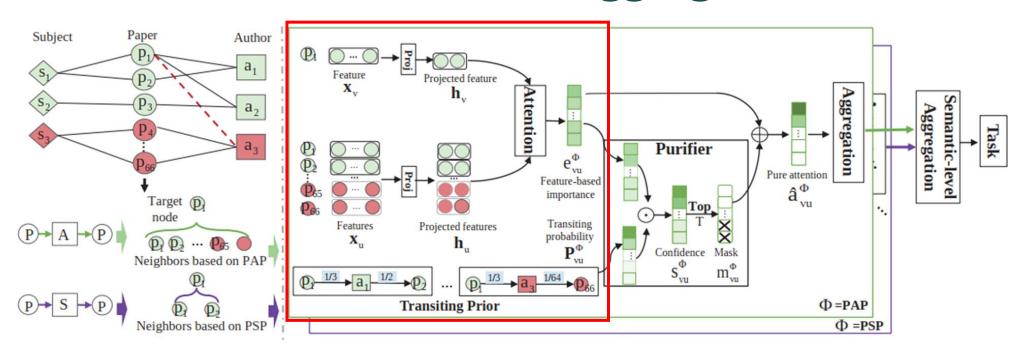


(d) Perturbation enlargement effect

Methodology



Node-level Aggregation



Node feature transformation. $\mathbf{h}_v = \mathbf{W}_A \mathbf{x}_v$.

$$\mathbf{h}_v = \mathbf{W}_A \mathbf{x}_v.$$

(4)

Feature-based importance.

$$e_{vu}^{\Phi} = \mathbf{h}_v \cdot \mathbf{h}_u,$$

(5)

neighbor $u \in \mathcal{N}_v^{\Phi}$

the importance e_{vu}^{Φ} of neighbors u to target node v under Φ

A metapath Φ

Transiting prior.
$$\mathbf{P}^{\Phi} = \mathbf{P}^{R_1} \cdots \mathbf{P}^{R_l}$$
,

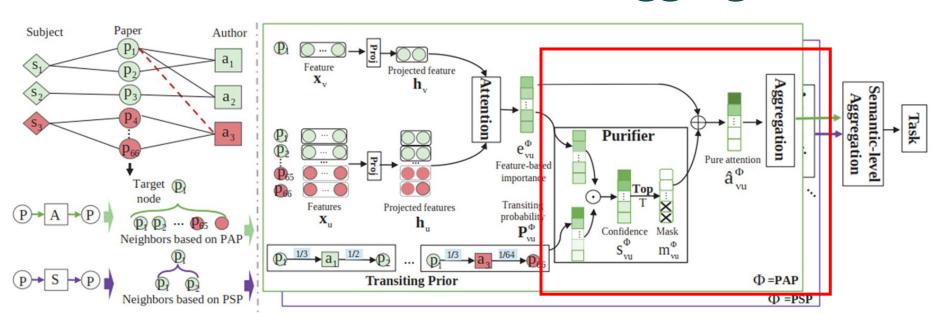
(1)

$$\Phi = A_1 \xrightarrow{R_1} A_2 \xrightarrow{R_2} \cdots \xrightarrow{R_l} A_{l+1}$$

$$\mathbf{P}^{R_i} = (\mathbf{D}^{R_i})^{-1} \mathbf{M}^{R_i}$$

Each element $\mathbf{P}_{vu}^{R_i}$ represents the probability of transiting from node v to u in relation R_i

Node-level Aggregation



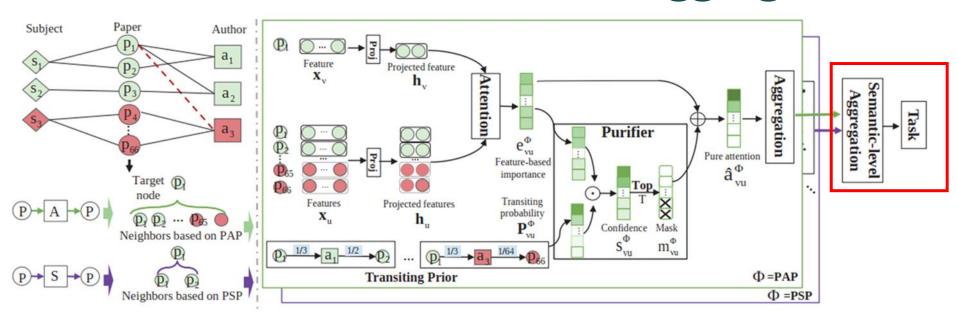
Confidence score.
$$s_{vu}^{\Phi} = \sigma(\mathbf{P}_{vu}^{\Phi} \cdot e_{vu}^{\Phi}).$$
 (6)

Purification mask.
$$m_{vu}^{\Phi} = \begin{cases} 8.1 & \text{if } u \in \text{Top}(\mathbf{s}_v^{\Phi}, T), \\ -\infty & otherwise, \end{cases}$$

$$\hat{a}_{vu}^{\Phi} = \frac{\exp(m_{vu}^{\Phi} + e_{vu}^{\Phi})}{\sum_{i \in \mathcal{N}_{v}^{\Phi}} \exp(m_{vi}^{\Phi} + e_{vi}^{\Phi})}.$$
 (8)

(7)
$$\mathbf{z}_{v}^{\Phi} = \sum_{u \in \mathcal{N}_{v}^{\Phi}} (\hat{a}_{vu}^{\Phi} \cdot \mathbf{h}_{u}). \tag{9}$$

Semantic-level Aggregation



$$w^{\Phi} = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbf{q}^T \cdot tanh(\mathbf{W} \cdot \mathbf{z}_v^{\Phi} + \mathbf{b}), \qquad (10) \quad \mathbf{q} \text{ is the semantic-level attention vector.}$$

$$\mathbf{z}_v = \sum_{\Phi \in \{\Phi_1, \dots, \Phi_P\}} \beta^{\Phi} \cdot \mathbf{z}_v^{\Phi}. \tag{11}$$

uses the softmax function to normalize the importance w^{Φ} to yield the attention value β^{Φ}

$$\mathcal{L} = -\sum_{v \in \mathcal{V}_{\tau}} \ln(\mathbf{W}_{clf} \cdot \mathbf{z}_{v,c_v}), \qquad (12) \quad c_v \text{ is the class of training node } v \in \mathcal{V}_L$$

Data	Model	Clean	Attack			
			$\Delta = 1$	$\Delta = 3$	$\Delta = 5$	
ACM	HAN	0.926	0.528	0.330	0.240	
	Jaccard	0.918	0.892	0.860	0.848	
	SimP	0.898	0.746	0.476	0.358	
	GGCL	0.902	0.260	0.084	0.084	
	HAN-RoHe _P	0.924	0.780	0.868	0.870	
	HAN-RoHe _T	0.940	0.900	0.564	0.304	
	HAN-RoHe	0.920	0.904	0.902	0.882	
DBLP	HAN	0.942	0.332	0.096	0.060	
	Jaccard	0.934	0.816	0.812	0.802	
	SimP	0.942	0.790	0.670	0.600	
	GGCL	0.914	0.684	0.464	0.344	
	HAN-RoHe _P	0.862	0.686	0.714	0.702	
	HAN-RoHe _T	0.944	0.760	0.360	0.220	
	HAN-RoHe	0.942	0.936	0.864	0.808	
Aminer	HAN	0.882	0.346	0.134	0.102	
	GGCL	0.808	0.276	0.056	0.042	
	HAN-RoHe _P	0.840	0.772	0.772	0.774	
	HAN-RoHe _T	0.842	0.788	0.668	0.562	
	HAN-RoHe	0.838	0.840	0.812	0.802	

 Δ is the maximum number of the perturbed edges

employ FGSM-based attacks to generate perturbation edges

Data	HGNNs	Clean	Attack		
			$\Delta = 1$	$\Delta = 3$	$\Delta = 5$
ACM	HAN	0.926	0.528	0.330	0.240
	HAN-RoHe	0.920	0.904	0.902	0.882
	MAGNN	0.926	0.711	0.647	0.589
	MAGNN-RoHe	0.916	0.901	0.907	0.909
	GTN	0.932	0.786	0.466	0.302
	GTN-RoHe _T	0.932	0.892	0.772	0.656
DBLP	HAN	0.942	0.332	0.096	0.060
	HAN-RoHe	0.942	0.936	0.864	0.808
	MAGNN	0.920	0.620	0.494	0.416
	MAGNN-RoHe	0.898	0.798	0.740	0.682
	GTN	0.946	0.564	0.200	0.128
	GTN-RoHe _T	0.950	0.644	0.334	0.172

